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THE DISCONTINUOUS GALERKIN METHOD WITH DIFFUSION 

GERARD R. RICHTER 

ABSTRACT. We propose a way of extending the discontinuous Galerkin method 
from pure hyperbolic equations to convection-dominated equations with an 
0(h) diffusion term. The resulting method is explicit and can be applied 
with polynomials of degree n > 1. The extended method satisfies the same 
0(hn+l12/) error estimate previously established for the discontinuous Galerkin 
method as applied to hyperbolic problems. Numerical results are provided. 

1. INTRODUCTION 

In this paper we consider a class of constant-coefficient convection-diffusion 
equations of the form 

(1.1) U}a - 71Uxx - 62Uyy = f, (x, y) E Q c R2. 

We assume Q is a bounded polygon, a (al, a2) is a unit vector, and a1 and 
72 are nonnegative. The term Ua denotes the directional derivative a Vu. 

Equation (1.1) may be hyperbolic, parabolic, or elliptic depending on the num- 
ber of nonzero diffusion coefficients which appear. We are interested in the 
convection-dominated case where a, and 2 are at most 0(h) functions of 
the mesh size h used to discretize (1.1). We assume that Dirichlet data for u 
is given on the "inflow" portion of the boundary F of Q, defined by a * n < 0, 
where n is the unit outer normal. In this setting, we will show that the discon- 
tinuous Galerkin method can be generalized to (1.1), thus extending its appli- 
cability beyond purely hyperbolic problems. 

We first describe the discontinuous Galerkin method for the hyperbolic limit 
of (1.1): 

(1.2) f Ua=f inQ, 
(*) u given on Frn(Q). 

Here, Fin(Q) is the "inflow" portion of F, defined by a - n < 0, where n is 
the unit outer normal along F. We assume Q has been divided into a quasi- 
uniform mesh of triangles of side length h with minimum angle bounded away 
from zero. For a generic triangle T we denote the space of polynomials of 
degree < n over T by Pn (T) . Starting from an interpolant (uh)- of the given 
initial data on Iin () , we seek a (discontinuous) approximation uh which lies 
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in P, (T) for each triangle T and satisfies the conditions 

(1.3) (Uh, vh) J ( _ (Uh) vha n = (f, vh), all vh e Pn(T) 
.i(T) 

where (,) denotes the L2 (T) inner product. Here (uh) - and (uh)+ are the 
upstream and downstream limits of uh on Fin(T), i.e., 

(Uh)?(P) = lim Uh(P + ?a). 

The boundary integral in (1.3) and all subsequent boundary integrals are taken 
with respect to arc length. 

The first papers dealing with the discontinuous Galerkin method were those 
of Reed and Hill [7] and Lesaint and Raviart [5]. In the latter, it was shown that 
the triangles can be ordered explicitly with respect to domain of dependence. 
Thus, uh as defined by (1.3) can be computed one triangle at a time. In practice, 
the method is well suited to an adaptive implementation in which the mesh is 
selected locally as uh evolves. Johnson and Pitkaranta [4] established the error 
estimate 

(1.4) HUlh - uIln < Chn+/112Iulln+l,n- 

Here and throughout the paper, C signifies a generic constant, independent of 
u and the triangulation, and for D c R2, 11 IID denotes the L2(D) norm and 
II HIn+1,D the Hn+1(D) norm. 

We propose the following extension of the discontinuous Galerkin method 
to (1.1): 

(uh - alU - 2uZ, v h) - [(U h)+ - (uh)]vh a. n 

(1.5) + J , T [() )+- (Uh)-]nl + U2[(Uh)+ -(Uh)]n2}Vh 
,* (T) 

= (of, vh), all vh E Pn(T). 

Here Fj (T) denotes those sides of Fin (T) which are not part of Fin(Q) (on 
Fin(Q) the upstream derivatives (uh)-, (u) - are in general not available). The 
quantities nI, n2 are the x, y-components of the unit outer normal to T . The 
boundary integral over FjP ( T) is analogous to that over Fin( T) and involves the 
diffusion, as opposed to convection, portion of ( 1.1). A similar term was used in 
[9, 10] in extending a continuous finite element scheme for hyperbolic equations 
to problems with diffusion. As in the case of the hyperbolic problem, uh starts 
as an interpolant of the given data on Fin A , and the triangles are processed in 
an explicit order relative to the convection term. Thus, any boundary data given 
for u on Fout(Q) will not be used. The scheme can be viewed as an arbitrarily 
high-order upwind discretization of both convection and diffusion terms. 

Defining qj = A, i = 1, 2, we will prove stability of the method ( 1.5) under 
a condition of the form 

(1.6) max{qj, q2} < q*, 
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where q* > 0. In obtaining this result, we require the triangle sides to be 
bounded away from the characteristic direction, i.e., 

(1.7) 1a.nl > c > 0. 

Under assumptions (1.6) and (1.7), we will derive error estimates of the form 

(1.8) I(uh _u)IrF0.(Q) + HU - uII|| < Chn+1121UII1,n, 

(1.9) I(uh _ U)aIIh < Ch nlulln+iK, 

(1.10) |- U)xllnh + 2|h(Uh-U)ylln h < Chn IuIIUn+i,n. 

The notation | I, when used with a subscript as in (1.8), will denote an L2 
boundary norm. The additional subscript h in (1.9) and (1.10) signifies that 
the corresponding norms are to be taken in the piecewise sense, e.g., 

11(U h - U)alln,h = TE 1(Uh - U)a11T. 
The bounds (1.8) and (1.9) are the same as those previously established for 

the hyperbolic limit [4]. However, (1.10) in conjunction with (1.9) indicates 
optimal 0(hn) accuracy for Vuh if one of the diffusion coefficients ai varies 
in proportion to h and the corresponding direction is not aligned with a. This 
is an improvement over the hyperbolic estimate of 0(hn-1/2) for JJV(u_-u) Ik, 
obtained from (1.4) via an inverse inequality. Thus, the addition of an 0(h) 
diffusion term leads to a slightly more favorable analysis. 

The above error estimates also hold over any subtriangulation Q2' c Q for 
which F1n(Q') c Fin(Q), a result of the explicitness of the method. They can 
thus be applied over a subregion Q' which excludes the vicinity of Fo0t(Q), 
where a boundary layer typically forms as a -* 0 [11]. Local versions of 
(1.8)-( 1.10), applicable in regions of smoothness, can also be derived using the 
techniques in [3]. We note, in addition, that although this paper is cast in terms 
of triangular meshes, its contents apply as well to meshes of triangles and/or 
rectangles. 

The proposed scheme (1.5) is applicable in the convection-dominated regime 
a1, q2 < 0(h). This is where finite element methods geared to the diffusion 
term, like Galerkin's method, typically exhibit instabilities. Two other finite 
element methods for convection-dominated problems are the streamline diffu- 
sion method [2, 3] and a continuous finite element method due to Reed and Hill 
[7] for which analyses are given in [1, 9, 10]. The streamline diffusion method 
is implicit, while the other two methods are explicit. All three satisfy roughly 
similar error estimates. The explicit methods have the additional requirement 
of the nonalignment condition (1.7). (This does not preclude the possibility of 
applying them to nonlinear problems where a is not known a priori, because 
their explicitness would allow the mesh to be developed locally, in tandem with 
the evolving uh .) 

Our analysis of the method (1.5) appears in the next section. Following that 
are numerical examples involving piecewise linear approximation of parabolic 
and elliptic problems of the form (1.1). In an Appendix, we sketch how a slight 
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modification of the scheme (1.5) will eliminate the nonalignment requirement 
(1.7) on the boundary of Q. 

2. ANALYSIS 

We define a(. ) to be the form associated with the left-hand side of (1.5): 

a(u, v) (u, - a, - a2uyy, v) - (u+ - u-)va n 

(2.1 ) 
. . (T) 

+ [a, (u+ - u-)nI + a2(u+ - u-)n2]v. 
J* (T) 

Assuming v - is defined on Fin (T), we obtain upon integrating by parts: 

a(u v)= -(u va)+aj(ux vx)+(2(uy v )y)+j u-v-a n 
. Ut ( T) 

+ JT[u+v+ - (u+ - u-)v+]a n 
rin(T) 

- [s1ux-n, + CU- n2]v- - [a, ux+n, + u2uy+n2]V+ 
oUt(T) rn(T) 

+ 4 [a,(ux+ - u-)nl + a2(u+ - u)-)n2]v+. 
(T) n ( T) 

This can be expressed in the form 

a(u v) = -(u v,) + a(ux vx) +a02(uy v Y) 
+ 5u-v-[ j n+ u-(v+-v-)a n 

r(T) rn(T) 

- j ~[s1ux-n, + CU- n2]v - 
(2.2) -Jut(T)u]F* (T) n + cY 

[JuFnT + a2U-n2](v+ - v-) 
in ( T) 

- [a ut+nl + a2u+n2] [v + (v+ V- 
ri(T) -r (T) 

Note also the following form for the "convection" part of a(v, v): 
(va v)j (v+ v-)v+aO n 

rin (T) 

=!f (V-)2a In-2J [2(v+-v)v+-(v+)2]a n 
- j ~ ~ ~ ( -)0. n - [2(v+ _-V-)2 (V)2 oa.*n 

2 JUt(T) 2 n(T) 
(2.3) if1 

=- (V-)2a [n 2 [(v+ - v-)2 - (V)2a 
2 J t(T) 2 n(T) 

2 ( T) n + n JFf(T) -v)1 ni 
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Thus, from (2.2) and (2.3), 

a(v, v) 
I 

(V-)2a 2 n + (rTV-)2jla.nj + au 1v212 + r2IIVYII2 
F(T)2) in() 

- J[cTn) + - )n2]v- 

(2.4) i~tT~rn~ 

- IF( (T [i[VX n j + a2v v n2](v+ + v-) 
rn(T) 

X~ ~~~a , Ivvni + q2 yn2][V- + (V+ V-)], 
in(T)-r,* (T) 

where II . signifies the L2(T) norm. 

Lemma 2.1. Given e > 0, there exist positive constants q*, Xo, ,j, 42 (q* de- 
pending on 6) such that for max{qi, q2} < q* 

a(uh , u h) > ! f [(u h)2 a n +0 |I(Uh)+ - (Uh) 1(T) 

(2.5) + 1( IIr - 

1 IlU II,(T) h) + 
2o.2(Iau2II2 C1tUlY I(T), h) 

-~~~~[r (u [lU)-ni + Cr2 (Uh )-n2 I(Uh)- 
-Jrut(T)Uri*(T) + 

+ CI(u h)Ir(Tlr*(T), 

where I(T) denotes the triangles, if any, lying on the upstream side of IF*n(T). 

Proof. Take v = uh in (2.4). The integral over F (T) can be bounded via the 
Schwarz and arithmetic-geometric mean inequalities, and an inverse inequality 
of the form I(v lirn (T) < Ch 1/2IvhIII(T),h: 

J [?- + c72(u9 n2] . [(uh)+ - (uh)] r* 
F 

(T) 
nl 2Uy-~ 

< C[o1 I(uh)- 1r_*(T) + Ca21(Uy) jr.* (T)I * I(Uh)+ - (Uh) rin(T) 

< C[ qUe71III(T),h + |2Y2IIuI(T),h] I(uh)+ - (Uh) irin(T) 

< C[v'a1I|| uX II(T), h + Vq12 IIUY III(T),h 

+ (V'- + V'2) * I(Uh)+ - (U)-)I(T)I 

Similarly, the last term of (2.4) with v = uh can be bounded as follows: 

[ul (uh)In, + Cu2(uh) n2] * {(uh) + [(uh)+ - (uh)]} 
rn(T)-r'* (T) 

< C{V'~7i I|uih 112 + V/?2 ||Uy 112 

+ (\'/YW+v2 Y)O[I(uhI( Fin(T)-r*(T) + I(U ) in(T) 

The desired result follows. OI 

We now obtain an error estimate for uh. We use as a comparison function 
ui = Pu , where Pn denotes L2 projection into Pn(T) . Defining eh = Uh-U Iu 
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we have 

(2.6) a(eh, eh) = a(u - u1, eh). 

From (2.2) and repeated use of the Schwarz and arithmetic-geometric mean 
inequalities, we obtain for arbitrary 5 > 0: 

a(u - u1, eh) < 5(al Ilexh 112 + C21e1Ih 2 + I(eh)? - (eh)- 

+Cos1 1CI || (u- uI)XII2 + a211(u- UI')yII2 + I(U -UI)Ir2 

+ - x I'rI (T) + I(U - ))yI-*n (T) 

+ 1- x n(T)-F* (T) + 7I u F-U )y I(T)-r *P(T)} 

+ CI(eh)i2(T*(T) + f (U - u)-(eh)-a . n 

- J uF~T [a,(u - u')j-ni + a2(u - u')7-n2](ehr. 
rut(T)u]F* (T) 

Using the approximation properties of uI and the fact that max{va, a2} < 
O(h), we obtain 

a(u - u1, eh) < (5(al Ilexh 112 + C2 Ieh I2 + I(eh)+ - (eh)- 12()) 

+ C31-h2n~|II|2I1n+l TuI(T) + CI(eh) IrFn(T)-rF*(T) 

+ (u - uI)-(eh)-a . n 
r(T) 

- 'JO t(T)UJT [a() u - u')j-nl + a2(u - uI)-n2](ehf. 
rut(T)u]F* (T) 

Taking 5 sufficiently small and applying Lemma 2.1, we obtain 

2 (h ) 12 * +2?(h ) + -(h )- 12s(T)+4 a Il exII 2 - 8l jeXhI11 2(T 
+~ ~~ +2f (- |hl-8lhl 

- Ja -(TuF(T [a (e )ni + 2 (e) 2](e) 

2(T) - n 

- J [ai(u - u')j-ni + a2(u - h )- 

rut(T)U]F* (T) 

+ CI(eh )lIn(T-rl*n(T) + Ch2 1l IIIn+l, TUI(T) 

Taking c sufficiently small (if there are at most m triangles on the downstream 
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side of IF0ot(T), e < y- will suffice), and summing over all triangles yields 

2 f (e )Jan + '0 , |(e) - (e)Ir(T) 
r(Q) TEO 

+4 1 |l0,I h +2f2 le; IIQ, h 

[a, (exh) -n I + q2 (eyh) -n2] (e h)- 
(2.7) - 1t(Q) 

<1 (u-uI)-(eh)-a. n 

- ./Fo~ [ai(u - uI)-ni + a2(U - u1)7 n2](eh)- 
rut(n) 

+ C( (eh )- Irif(Q) + h2n+1 IIuI+12 Q, 

where 4, 4j, 2 are positive constants. Moreover, 

(2.8) W42) [a, (e ) - n + a2 (ey n2] (eh 

<[V~ 1Ile. IIQ, h + ,Fc2 Ie IIQh + (Vl + V2) I (eh )IU (] 

' ) 

[al(u- u')-n1 
+ o2(u - u)7 n2](eh) 

(2.9) ? C[ai1 -u')XIIQh + /,f2II( -U)II ,h 
+ (vl-l + t-V)I(eh)) I-u()] 

? C[(V-Y + V7)W)1(eh)->(Q) +1 h2n+l IIuI2 

and 

2 f 
[(eh a- n - (u - uI)-(e)a - n 2 r(O) 42) 

(2.10) 21 ?)- _ (u - u')-]2a n + 2 j[(u - u,)]2a n 

< [(Uh _ U)-]2a . n + Ch2n+1 IIuI12 , 

From (2.7)-(2.10) we infer 

I(u - U)<I ut(Q) + E I(eh)+ - (eh<Ir(T) + ll exhIIQh + U211 eyhlI 2h 
TEQ 

? C(I(uh U)- .Iri(Q) + h2n+1 IIUII+12Q)- 

We shall assume that (uh)- is taken to be a standard interpolant on Fin(Q). 
We then use the fact that u' is an optimal-order interpolant to conclude: 

Theorem 2.1. There exists a constant q* > 0 such that for max{qj, q2} < q* 

(2.11) I(uh - U)Ir0- (U) + / I(uh)?- ()-uh2 (T) < Chn+/12 IIuIIn+lQ, 

TEQ 
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(2.12) Iuh _ u-xII2,hn (2.12) ||(Uh0 U)xllQ h < Cql I h |2ln+l,Q, 

(2.13) II(Uh -U)yIIQh < Cq? 2 I ||ln+lQ 

By taking vh = uh in (1.5), it can also be shown that 

(2.14) II(uh - U)allI,h < Chn IIuII+1,n. 
Note that (2.11) also holds for any subtriangulation Q1' c whose domain of 
dependence as defined by (1.5) does not include any triangle of Q - Qu'. This 
observation, together with the local stability result [4] 

(2.15) uh l|IT < C(VhiI (Uh) -iri(T) + hilf i| T) 

for solutions of (1.3), can be used to extend (2.11) to the interior estimate 

(2.16) HUh -_uhl < Chn+112 11Uni,+1,n. 

3. COMPUTATIONAL EXAMPLES 

Our first example is the elliptic equation 

(3.1) -uAu+u = O in Q, 

where Q, pictured in Figure 3.1, is a trapezoidal domain triangulated via con- 
gruent right isosceles triangles. Assuming the angle of inclination of a from 
the positive x-axis is between ir/4 and 3ir/4, Fin(Q) is the y = 0 portion of 

A solution of (3.1) that remains globally smooth as a -> 0 is 

u* (s, t) = e-As sin wt, {s= aix +a2Y . 
t = a2X - aly, 

where 
_7r 1?+4co)2a2-1 

a2 2a 
As initial data for (3.1) we take 

(3.2) u = U on Fi,(Q). 

When a is small, the role of the boundary data on Fout(Q) is, in general, to 
induce an adjacent outflow boundary layer of width 0(a) [11]. Our method 
uses only the "hyperbolic" boundary data (3.2), and yields an approximation 

Y 

.25 

FIGUE 3.11 

FIGURE 3.1 
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TABLE 3.1 

h- 1 EO ratio 

16 .121 - 

32 .682(-1) 1.78 

64 .284(-1) 2.40 

128 .937(-2) 3.03 

256 .270(-2) 3.47 

512 .727(-3) 3.72 

1024 .189(-3) 3.86 

2048 .480(-4) 3.93 

uh that does not have this boundary layer. In the present case, Theorem 2.1 
implies that uh u* as h -O 0 provided a/h < q*. 

Table 3.1 corresponds to piecewise linear approximation of (3.1), (3.2) with 
a inclined at an angle ir/3 from the horizontal and a/h = 1, where h is the 
triangle height. Weighted L2 errors 

Eo - / [* - (uh)-]21ae * nj 
/ out(z) 

are given, as well as ratios of successive such quantities as h was continually 
halved. The results indicate an optimal O(h2) rate of convergence, which is 
better than the theoretical prediction in (2.11). This pattern is typical of the 
discontinuous Galerkin method as applied to the hyperbolic problem (1.2) in 
the presence of the condition (1.7) [6, 8]. 

As our second example, we take the parabolic equation 

(3.3) u, - au,, = 0 in Q, 

where Q and its triangulation, as well as the characteristic direction a, are the 
same as in the previous example. We take as initial data for (3.3) 

(3.4) u(x,0) = sinx on Fin(Q)- 

The problem defined by (3.3), (3.4) has the globally smooth (as a -* 0) solution 

u*(x,y)=exp(ay sin x- ay 
\a2/ a2 

which uh will approximate. 
The results in Table 3.2 correspond to piecewise linear approximation and 

a/h = 1. The optimal O(h2) convergence rate is again observed. 
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TABLE 3.2 

he- 1 EO ratio 

16 .164(-2) - 

32 .522(-3) 3.14 

64 .148(-3) 3.54 

128 .391(-4) 3.77 

256 .101(-4) 3.89 

512 .255(-5) 3.94 

1024 .643(-6) 3.97 

2048 .161(-6) 3.99 

APPENDIX 

The nonalignment condition (1.7) is an important assumption of our analysis. 
It cannot not be satisfied, however, if the boundary F of Q contains a portion 
which is tangent or nearly tangent to a. Here we sketch a slight modification 
of the basic scheme which eliminates the need for the nonalignment restriction 
on F. 

Let us consider a triangle T, as depicted in Figure 4.1, which has a side 
F, c F where (1.7) is violated. We shall assume Dirichlet data for u is available 
on F, whether or not it is an inflow side of T. 
For such a triangle, we append to the left-hand side of (1.5) 

- [(J h )ext - (uh)int][a, (vh )nj + U2(Vh )n2b 

where (uh)ext is an optimal-order interpolant of the given Dirichlet data on 
FI and (uh)int is the limit of uh as F, is approached from the interior of 
T. (If F, is an inflow side of T, then (uh)ext = (Uh)- and (uh)int = (Uh)+; 

if F, is an outflow side, the situation is reversed.) With the corresponding 
modification made to the bilinear form a(u, v) in ?2, (2.2), (2.4), and (2.5) 

r 

A 
Ct 

F1 T 

Fr*(T) 

FIGURE 4.1 
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become, respectively, 

a(u, v)= -(u, v)+al(ux, vx) +a2(uy ,vy) 

+ u-v-j-n + I ( - u(v+ -v-) n 
f(T) +-(T) 

- J {oi[u UXnt + U2U- n2]vk- 
rMr-ri 

kriux-ni + CU-n2](v+ - V-) 
rin (T) 

.n { uxtint +(ext _ int vintn 

+ arAUzintvint + (Uext - uint)vint]n2}, 

a(v, v) = 2 (v-)2a * n + 2 j (V+ - V-)21a nj + a, IIVxII2 + a2IIVYI12 r(T) 2 n(T) 

- 

L [a1vin1 

+ q2vy-n2]V- r(T)-r' 
I( lvTn) +oa2vy n2](v+ - v) 
Jl(T) 

ina1vxtn + i^Vntn ivext 

and~ 

~~[r 

- 

ni 
+ 

ta2vt n2I 

and 

a(u uh) 
> 2 

J [(Uh) 2a 
n + Xo 

j [(Uh)+ -a( U)21a. 
nl 

2 (T) rn (T) 

+ Cioi(II 4II -E IIUX III(T), h) + 2a2(IuI2 -1 -EIIuY III(T) h) 

-Jr(T)-r [1 h(ux n + u)- + CI(Uh)extI2 
r(T)_rl 

In obtaining error estimates, we must bound an additional term arising from 
a(u - u1, eh): 

x [ -, (U-UI)intnI + C2(U - uI)intn2](eh)int 

< C(ai + q2)I(eh)intlrihn-/2IIuIIn+1. 

Note that 

orI(e)intlri < Cal{I(eh)1r(T)-Ir + I(eh)+ - (eh)1r*(T) + Vhllexaj} 

< Ch { (J I(eh)-12la nj + I l(eh)+ - (eh)-12Ia. n)1 
r(T) rn(T) 
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since a, = O(h). We also have an analogous bound for q2I(eh)intIr, involving 
II . The arithmetic-geometric mean inequality then gives 

<b5h {f [(eh)j2 I2a. nI+ [(eh)+ - (eh)-]21a. nI+ aI1e 2+1U211e)hII2} r(T) .i(T) 

+ C5-1h2nIIuII2 

for arbitrary 5 > 0. Thus, from a(eh, eh) = a(u- uI, eh), we can obtain a 
bound of the form 

1 
+h) [(eh)-]2 latnl+ 42 [(eh)+ -(eh)-]21a n 

2 rut(i2) 2 .(T) 

+E 1 i (II2 l-E cI eXII||I(T) h) + 42(2 ( |- e - 1 I|eYIII(T) h) 

- J [TFAl (eh)-n + a2 (eyh) 
- 

n2] (eh) 
- 

< (2 -h) [(eh)-]21a -nn + (I -uI)-(eh)-a. n 
2 -42) r(T) 

- J(T)[ (U - U')x nl + u2(u - uI)7n2](e hy 

+ CI(e h)extI2 + Ch21 (IIUII+1TuI(T) + h1 IIuI1+2) 

Let Qt denote the union of those boundary triangles for which the special 
prescription is used. For a given Q, our mesh assumptions (quasi-uniformity, 
minimum angle condition) imply that Qt consists of at most 0(h-1) trian- 
gles. The above estimate, together with that of ?2 for triangles in Q- - t. 
can be summed in a layer-by-layer fashion, as in [1]. The result will be 
a set of analogs of (1.8)-(1.10), in which I(uh - u)-Ir0ut(n) is replaced 
by {fr (fi)[(Uh - u)-]21a nI}1/2 and IIuIln+1,n is replaced by IIUIIn+l,n + 

h-1/2IIuIIn+1,nt . Note that the area of Qt is of order h. Thus, if u is suf- 
ficiently smooth in Qt (e.g., u E Wn+1, ?o(Qt)), we retain the same order of 
accuracy as given by the estimates in ?2. 
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